德國KOBOLD溫度傳感器金屬在環(huán)境溫度變化后會產(chǎn)生一個相應的延伸,因此傳感器可以以不同方式對這種反應進行信號轉換。 溫度傳感器兩片不同膨脹系數(shù)的金屬貼在一起而組成,隨著溫度變化,材料A比另外一種金屬膨脹程度要高,引起金屬片彎曲。彎曲的曲率 可以轉換成一個輸出信號。 雙金屬桿和金屬管傳感器 隨著溫度升高,金屬管(材料A)長度增加,而不膨脹鋼桿(金屬B)的長度并不增加,這樣由于位置的改變,金屬管的線性膨脹就可以進 行傳遞。反過來,這種線性膨脹可以轉換成一個輸出信號。 熱電偶由兩個不同材料的金屬線組成,在末端焊接在一起。再測出不加熱部位的環(huán)境溫度,就可以準確知道加熱點的溫度。由于它必須有 兩種不同材質(zhì)的導體,所以稱之為熱電偶。不同材質(zhì)做出的熱電偶使用于不同的溫度范圍,它們的靈敏度也各不相同。熱電偶的靈敏度是指加 熱點溫度變化1℃時,輸出電位差的變化量。對于大多數(shù)金屬材料支撐的熱電偶而言,這個數(shù)值大約在5~40微伏/℃之間。 由于熱電偶溫度傳感器的靈敏度與材料的粗細無關,用非常細的材料也能夠做成溫度傳感器。也由于制作熱電偶的金屬材料具有很好的延 展性,這種細微的測溫元件有的響應速度,可以測量快速變化的過程。 如果要進行可靠的溫度測量,首先就需要選擇正確的溫度儀表,也就是溫度傳感器。其中熱電偶、熱敏電阻、鉑電阻(RTD)和溫度IC都是測 試中的溫度傳感器。 以下是對熱電偶和熱敏電阻兩種溫度儀表的特點介紹。 1、熱電偶 熱電偶是溫度測量中的溫度傳感器。其主要好處是寬溫度范圍和適應各種大氣環(huán)境,而且結實、價低,無需供電,也是的。熱電偶由在一 端連接的兩條不同金屬線(金屬A和金屬B)構成,當熱電偶一端受熱時,熱電偶電路中就有電勢差??捎脺y量的電勢差來計算溫度。 不過,電壓和溫度間是非線性關系,溫度由于電壓和溫度是非線性關系,因此需要為參考溫度(Tref)作第二次測量,并利用測試設備軟件 或硬件在儀器內(nèi)部處理電壓-溫度變換,以最終獲得熱偶溫度(Tx)。數(shù)據(jù)采集器均有內(nèi)置的測量了運算能力。 簡而言之,熱電偶是的溫度傳感器,但熱電偶并不適合高精度的的測量和應用。 2、熱敏電阻 熱敏電阻是用半導體材料, 大多為負溫度系數(shù),即阻值隨溫度增加而降低。溫度變化會造成大的阻值改變,因此它是的溫度傳感器。但熱 敏電阻的線性度極差,并且與生產(chǎn)工藝有很大關系。制造商給不出標準化的熱敏電阻曲線。 熱敏電阻體積非常小,對溫度變化的響應也快。但熱敏電阻需要使用電流源,小尺寸也使它對自熱誤差極為敏感。 熱敏電阻在兩條線上測量的是絕對溫度, 有較好的精度,但它比熱偶貴, 可測溫度范圍也小于熱偶。一種常用熱敏電阻在25℃時的阻值 為5kΩ,每1℃的溫度改變造成溫度傳感器的電阻變化。注意10Ω的引線電阻僅造成可忽略的 0.05℃誤差。它非常適合需要進行快速和靈敏溫 度測量的電流控制應用。尺寸小對于有空間要求的應用是有利的,但必須注意防止自熱誤差。 KOBOLD溫度傳感器還有其自身的測量技巧。熱敏電阻體積小是優(yōu)點,它能很快穩(wěn)定,不會造成熱負載。不過也因此很不結實,大電流會造成自 熱。由于熱敏電阻是一種電阻性器件,任何電流源都會在其上因功率而造成發(fā)熱。功率等于電流平方與電阻的積。因此要使用小的電流源。如 果熱敏電阻暴露在高熱中,將導致性的損壞。 通過對兩種溫度儀表的介紹,希望對大家工作學習有所幫助。 |